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Abstract

In this paper, fuzzy possibilistic c-means (FPCM) approach based on penalized and compensated constraints are proposed to
vector quantization (VQ) in discrete cosine transform (DCT) for image compression. These approaches are named penalized
fuzzy possibilistic c-means (PFPCM) and compensated fuzzy possibilistic c-means (CFPCM). The main purpose is to modify
the FPCM strategy with penalized or compensated constraints so that the cluster centroids can be updated with penalized or
compensated terms iteratively in order to 4nd near-global solution in optimal problem. The information transformed by DCT
was separated into DC and AC coe5cients. Then, the AC coe5cients are trained by using the proposed methods to generate
better codebook based on VQ. The compression performances using the proposed approaches are compared with FPCM and
conventional VQ method. From the experimental results, the promising performances can be obtained using the proposed
approaches. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Discrete cosine transform (DCT) [1–3] and vector quan-
tization (VQ) [4–10] are two popular methods in image
compression. The DCT approach has an excellent energy
compaction property and requires only real operations in
transformation process. DCT, de4ned by Ahamed et al. [1]
in 1974, has been applied in many 4elds such as signal pro-
cessing, data compression, 4ltering, and feature extraction
in image processing. It is close to the optimal transform for
the 4rst-order Markov image in energy compaction and con-
sequently, in decorrelating a signal.
Clustering or codebook design is an essential process in

image compression based on vector quantization. Codebook
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design can be considered as a clustering process in which
the training vectors are classi4ed into the speci4c classes
based on the minimization of average distortion between
the training vectors and codebook vectors (classes’ centers).
The goal of VQ is to create a codebook for which the average
distortion generated by approximating a training vector and
a codeword in a codebook is minimized. Vector quantization
is a signi4cant methodology in image compression, in which
blocks of divided pixels are formed as training vectors rather
than individual scales. Such a method results in the massive
reduction of the image information in image transmission.
The image is reconstructed by replacing each image block
with its nearest codevector.
The fuzzy clusters are generated by dividing the train-

ing samples in accordance with the membership function.
The fuzzy c-means algorithms (FCM) use the probabilistic
constraint to enable the memberships of a training sample
across clusters that sum up to 1, which means the diEerent
grades of a training sample are shared by distinct clusters,
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but not as degrees of typicality. In contrast, each component
generated by the possibilistic c-means (PCM) corresponds
to a dense region in the data set. Each cluster is independent
of the other clusters in the PCM strategy. Memberships and
typicalities are both important for the correct feature of data
substructure in clustering problem. If a training sample has
been classi4ed to a suitable cluster, then membership is a
better constraint for which the training sample is closest to
this cluster. In other words, typicality is an important factor
for unburdening the undesirable eEects of outliers to com-
pute the cluster centers. The penalized term was added into
fuzzy c-means by Yang [11] and Yang and Su [12] to con-
struct the penalized fuzzy c-means (PFCM) algorithm. Lin
[13] also embedded the compensated constraint into FCM
to create compensated fuzzy c-means (CFCM) algorithm.
The performances in clustering problem can be updated in
PFCM and CFCM that have been proven by Yang [11] and
Lin [13], respectively. In the proposed approaches, the prob-
lem of the vector quantization is regarded as a process of the
minimization of a cost function. This cost function is de4ned
as the average distortion between the training vectors in AC
information transformed by DCT to the cluster centers rep-
resented by the codevectors in the codebook. The training
vectors, constructed by AC information in DCT transfor-
mation, are directly fed into these unsupervised algorithms.
Then, the cluster centroids are updated using membership
and typicality functions with penalized or compensated con-
straints. However, a training vector does not necessarily
belong to one class. Instead, a certain membership grade
belonging to proper class is associated with every training
vector, and typicality related to the mode of the cluster can
also be calculated based on all n training samples. Conse-
quently, the cluster centroids, membership grades, and typ-
icality degrees can be updated to remove outliers and to
speed up the energy converging into a near-global minimum
in order to produce a satisfactory codebook. In a simulated
study, the proposed approaches are described to have the
capability for VQ in DCT for image compression, whose
promising results are shown.
The remainder of this paper is organized as follows.

Section 2 discusses VQ and DCT algorithms in image
compression. FCM approaches are presented in Section 3.
Possibilistic clustering technique is shown in Section 4;
Section 5 proposes FPCM strategy; Section 6 presents
penalized fuzzy possibilistic c-means (PFPCM) and com-
pensated fuzzy possibilistic c-means (CFPCM) methods
for VQ in DCT domain. Section 7 shows several experi-
mental results; Finally, Section 8 gives the discussion and
conclusions.

2. VQ and DCT

VQ is an important methodology in image compression,
in which blocks of divided pixels are formed as training
vectors. Such a method results in massive reduction of the

image information in image transmission. The image is
reconstructed by replacing each image block with its nearest
codevector. The dimensions, with N ×N pixels in an image,
can be divided into n blocks (vectors of pixels) and each
block occupies �× � (� ¡ N ) pixels. A vector quantization
is a technique that maps training vectors {Xx; x=1; 2; : : : ; n}
in Euclidean � × �-dimensional space R�×� into a set
{Yx; x = 1; 2; : : : ; n} of points in R�×�, called a codebook.
The mapping is usually de4ned to minimize expected
distortion measure, E[d(Xx;Yy)], using the mean square
error (MSE) given by d(x; y) = (x− y)T(x− y).
Transform coding has been popularly used in image

compression. Non-overlapping blocks are transformed to
produce an array of coe5cients. The idea is to remove the re-
dundancy e5ciently from image pixels in the transform do-
main. The DCT is one of commonly used transform-coding
methods in image compression. The DCT has been shown
to posses a superior energy compacting property. A fre-
quency spectrum F(r; s) of an N ×N image represented by
f(j; k) for j; k = 0; 1; : : : ; N − 1 can be de4ned as

F(r; s) =
4C(r)C(s)

N 2

N−1∑
j=0

N−1∑
k=0

f(j; k)

×cos (2j + 1)r�
2N

cos
(2k + 1)s�

2N
: (1)

The inverse DCT (IDCT) is, therefore, de4ned as

f(j; k) =
N−1∑
j=0

N−1∑
k=0

C(r)C(s)F(r; s)

×cos (2j + 1)r�
2N

cos
(2k + 1)s�

2N
; (2)

where the values of r and s are also from 0 to N − 1 and C
is de4ned as

C(w) =




1√
2

for w = 0;

1 for w = 1; 2; : : : ; N − 1:

(3)

The input image will be decomposed into non-overlapping
blocks of equal size at the 4rst stage in the system. After
the image is blocked, the DCT is applied to transform each
block into frequency spectrum of DC and AC terms. Then,
the AC coe5cients are recoded as 6-bit positive values (ex-
pressed values from −32 to 32) to be fed into the proposed
algorithms for training vectors and generating better code-
book oE-line. Then, the DC term and the indexes searched
from codebook with the minimum distortion are transmitted
in the encoding process. In decoder, indexes of codevec-
tors are received and recoded to get AC information (code-
vectors). Then, the IDCT is used to reconstruct the image
using the received DC and the reconstructed AC infor-
mation. The detail procedure for the encoder and decoder
systems is shown in Fig. 1. One DC and 15 AC values
in a 4× 4 block are also shown in Fig. 2.
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Fig. 1. The procedure of the encoder and decoder system.

DC AC1 AC2 AC3

AC4 AC5 AC6 AC7

AC8 AC9 AC10 AC11

AC12 AC13 AC14 AC15

Fig. 2. DC and AC values in a 4× 4 block.

3. Fuzzy clustering techniques

Fuzzy clustering strategies are mathematical tools for
detecting similarities between the members of a collection
of samples. The theory of fuzzy logic provides a mathemat-
ical framework to capture the uncertainties associated with
the human cognition processes. Unlike the hard c-means
method, in FCM every training sample belongs to every
cluster with some degree of membership. In the following
subsections, fuzzy c-means strategies are reviewed.

3.1. Fuzzy c-means algorithms

The fuzzy set theory has been applied in diEerent 4elds
since its introduction in 1965 by Zadeh [14]. The theory of
fuzzy logic provides a mathematical environment to capture
the uncertainties of the same human cognition processes.
The FCM algorithms clustering strategy was 4rst presented
by Dunn [15], and an associated conception and strategy

were proposed by Bezdek [16]. The purpose of the FCM
approaches, like the conventional clustering techniques, is
to group data into clusters of similar items by minimizing
a least squared-error measure. For c¿ 2 (c is the number
of clusters) andm ¿ 1, the algorithm chooses �x :Z → [0; 1]
so that

∑
x �x=1 and $i ∈Rd for i=1; 2; : : : ; c to minimize

the objective function

JFCM =
1
2

n∑
x=1

c∑
i=1

(�x; i)
m||zx − $i||2; (4)

where �x; i is the value of the ith membership grade on
the xth sample zx. The cluster centers $1; : : : ; $j; : : : ; $c

can be regarded as prototypes for the clusters represented
by the membership grades. For the purpose of minimizing
the objective function, the cluster centers and membership
grades are chosen so that a high degree of membership oc-
curs for samples closer to the corresponding cluster centers.
The membership grades and cluster centers are iteratively
updated by the following formulas:

�x; i =

(
c∑

‘=1

(||zx − $i||2)1=(m−1)

(||zx − $‘||2)1=(m−1)

)−1

;

x = 1; 2; : : : ; n; i = 1; 2; : : : ; c (5)

and

$i =
1∑n

x=1 (�x; i)m

n∑
x=1

(�x; i)
mzx: (6)

The value m∈ (1;∞) is the fuzzi4cation parameter (or
exponential weight). This parameter reduces the sensitivity
of the class centers to noise in the data.
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3.2. Penalized fuzzy c-means and compensated fuzzy
c-means

A variant of the fuzzy clustering methods PFCM [11,12]
and CFCM [13] algorithms, added penalty and compensated
terms to the objective function in the past. The PFCM and
CFCM objective functions are reviewed as follows:

JPFCM =
1
2

n∑
x=1

c∑
i=1

�m
x; i||zx − $i||2 − 1

2
v

n∑
x=1

c∑
i=1

�m
x; i ln #i

= JFCM − 1
2
v

n∑
x=1

c∑
i=1

�m
x; i ln #i (7)

and

JCFCM =
1
2

n∑
x=1

c∑
i=1

�m
x; i||zx − $i||2

+
1
2

$
n∑

x=1

c∑
i=1

�m
x; i tanh(#)

= JFCM +
1
2
$

n∑
x=1

c∑
i=1

�m
x; i tanh(#i); (8)

where #i is a proportional constant of class i, while
v (v¿ 0) and $ ($¿ 0) are constants. When v = 0 and
$ = 0; JPFCM and JCFCM are equal to JFCM . The penalty
and compensated terms, − 1

2 v
∑n

x=1

∑c
i=1 �m

x; i ln #i and
+1
2 $
∑n

x=1

∑c
i=1 �m

x; i tanh(#i), are added to the objective
function, #i is de4ned as

#i =

∑n
x=1 �m

x; i∑n
x=1

∑c
i=1 �m

x; i
; i = 1; 2; : : : ; c (9)

and membership functions �x; i for PFCM and CFCM are
shown as

(�x; i)PFCM =

(
c∑

‘=1

(||zx − $i||2 − v ln #i)1=(m−1)

(||zx − $‘||2 − v ln #‘)1=(m−1)

)−1

;

×x = 1; 2; : : : ; n; i = 1; 2; : : : ; c (10)

and

(�x; i)CFCM =

(
c∑

‘=1

(||zx − $i||2 + $ tanh(#i))1=(m−1)

(||zx − $‘||2 + $ tanh(#‘))1=(m−1)

)−1

;

x = 1; 2; : : : ; n; i = 1; 2; : : : ; c; (11)

respectively. The fuzzy clustering methods not only suEer
from the crisp strategies, but also from the presence of noise
in the data. Most distance functions are geometric in nature,
so that noise points are often distant from the prede4ned
subregions and inPuence the resulting partition. In unsuper-
vised techniques, it is a serious problem to generate mem-
bership functions from training data when the nature and
numbers of clusters in the data set are unknown.

4. Possibilistic clustering technique

The theory of fuzzy logic provides a mathematical
environment to capture the uncertainties in much the same
human cognition processes. The fuzzy clusters are gener-
ated by dividing the training samples in accordance with the
membership functions matrix U = [�x; i]. The component
�x; i denotes the grade of membership that a training sample
belongs to a cluster. Real data unavoidably involves some
noises, either from interface due to noise sources which
exist in the natural environment or from the equipment
itself. Therefore, the drawback of PCM will be signi4cant
while processing improper data. The purpose of the FCM
approaches, like the conventional clustering techniques, is
to group data into clusters of similar items by minimizing
a least-squared error measure. The FCM algorithms use the
probabilistic constraint to enable the memberships of a train-
ing sample across clusters to sum up to 1, which means the
diEerent grades of a training sample are shared by distinct
clusters but not as degrees of typicality. In contrast, each
component generated by the PCM corresponds to a dense
region in the data set. Each cluster is independent of the
other clusters in the PCM strategy. The PCM was proposed
by Krishnapuram et al. [17,18] for unsupervised clustering.
The objective function of the PCM can be formulated as

JPCM =
1
2

n∑
x=1

c∑
i=1

(tx; i)
'||zx − $i||2

+
n∑

x=1

(i

c∑
i=1

(1− tx; i)
'; (12)

where

(i =

∑n
x=1 t'x; i||zx − $i||2∑n

x=1 t'x; i

is the scale parameter at the ith cluster,

tx; i =
1

1 + (||zx − $i||2=(i)1=('−1)

is the possibilistic typicality value of training sample zx

belonging to the cluster i. '∈ [1;∞) is a weighting factor
called the possibilistic parameter. Typical of other cluster
approaches, the PCM also depends on initialization. In PCM
techniques, the clusters do not have a lot of mobility, since
each data point is classi4ed as only one cluster at a time
rather than all the clusters simultaneously. Therefore, a suit-
able initialization is required for the algorithms to converge
to nearly global minimum. Barni et al. [19] indicated that
the price PCM pays for its freedom to ignore noisy points
in that PCM is very sensitive to good initializations, and it
sometimes generates coincident clusters.

5. Fuzzy-possibilistic c-means

Memberships and typicalities are both important for the
correct feature of data substructure in clustering problem.
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If a training sample has been classi4ed into a suitable clus-
ter, membership is a better constraint for which the training
sample is closest to this cluster. On the other hand, typical-
ity is an important factor for unburdening the undesirable
eEects of outliers to compute the cluster centers. In accor-
dance with Ref. [20], typicality is related to the mode of the
cluster and can be calculated based on all n training sam-
ples. Thus, an objective function in the FPCM depending
on both memberships and typicalities can be shown as

JFPCM =
1
2

n∑
x=1

c∑
i=1

(�m
x; i + t')x; i||zx − $i||2; (13)

where memberships, typicalities, and centroids are de4ned
as

�x; i =

(
c∑

‘=1

(||zx − $i||2)1=(m−1)

(||zx − $‘||2)1=(m−1)

)−1

;

x = 1; 2; : : : ; n; i = 1; 2; : : : ; c; (14)

tx; i =

(
n∑

y=1

(||zx − $i||2)1=('−1)
(||zy − $i||2)1=('−1)

)−1

;

y = 1; 2; : : : ; n; i = 1; 2; : : : ; c (15)

and

$i =
1∑n

y=1(�
m
y; i + t'y; i)

n∑
x=1

(�m
x; i + t'x; i)zx (16)

individually. The FPCM produces not only membership
grades but also typicality degrees in which the objective
function a convex function just as FCM, which has been
proved to converge in mathematics.

6. Penalized fuzzy possibilistic c-means and compensated
fuzzy possibilistic c-means

Typical of the de4nition of PFCM and CFCM, fuzzy pos-
sibilistic clustering methods can also embed penalized and
compensated terms to the objective function to construct
PFPCM and CFPCM algorithms. The objective functions of
PFPCM and CFPCM are de4ned as follows:

JPFPCM =
1
2

n∑
x=1

c∑
i=1

(�m
x; i + t'x; i)||zx − $i||2

− 1
2
)

n∑
x=1

c∑
i=1

(�m
x; i ln #i + t'x; i ln *x)

= JFPCM − 1
2
v

n∑
x=1

c∑
i=1

(�m
x; i ln #i + t'x; i ln *x) (17)

and

JCFPCM =
1
2

n∑
x=1

c∑
i=1

(�m
x; i + t'x; i)||zx − $i||2

+
1
2

$
n∑

x=1

c∑
i=1

(�m
x; i tanh #i + t'x; i tanh *x)

= JFPCM +
1
2
$

n∑
x=1

c∑
i=1

(�m
x; i tanh #i + t'x; i tanh *x);

(18)

where #i is a proportional constant of class i; *x

is a proportional constant of training vector zx, and
v (v¿ 0); $ ($¿ 0) are also constants. When v = 0 and
$= 0, both JPFPCM and JCFPCM are equal to JFPCM . The pe-
nalized and compensated terms, − 1

2 v
∑n

x=1

∑c
i=1(�

m
x; i ln #i

+ t'x; i ln *x) and 1
2 $
∑n

x=1

∑c
i=1(�

m
x; i tanh #i + t'x; i tanh *x),

are added to the objective functions JPFPCM and JCFPCM ,
respectively. In these functions, #i and *x are de4ned as

#i =

∑n
x=1 �m

x; i∑n
x=1

∑c
i=1 �m

x; i
; i = 1; 2; : : : ; c; (19)

*x =

∑c
i=1 t'x; i∑n

x=1

∑c
i=1 t'x; i

; x = 1; 2; : : : ; n: (20)

Membership �x; i and typicality tx; i for PFPCM and CFPCM
are, respectively, shown as

(�x; i)PFPCM =

(
c∑

‘=1

(||zx − $i||2 − v ln #i)1=(m−1)

(||zx − $‘||2 − v ln #‘)1=(m−1)

)−1

;

x = 1; 2; : : : ; n; i = 1; 2; : : : ; c; (21)

(tx; i)PFPCM =

(
n∑

y=1

(||zx − $i||2 − v ln(*x))1=('−1)

(||zy − $i||2 − v ln(*y))1=('−1)

)−1

;

x = 1; 2; : : : ; n; i = 1; 2; : : : ; c (22)

and

(�x; i)CFPCM =

(
c∑

‘=1

(||zx − $i||2 + $ tanh(#i))1=(m−1)

(||zx − $‘||2 + $ tanh(#‘))1=(m−1)

)−1

;

x = 1; 2; : : : ; n; i = 1; 2; : : : ; c; (23)

(tx; i)CFPCM =

(
n∑

y=1

(||zx − $i||2 + $ tanh(*x))1=('−1)

(||zy − $i||2 + $ tanh(*y))1=('−1)

)−1

;

x = 1; 2; : : : ; n; i = 1; 2; : : : ; c: (24)

The centroid of cluster i is calculated in the same way as
the de4nition in Eq. (16) for PFPCM and CFPCM.
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Fig. 3. Coordinates of the data set.

Table 1
The membership grades and typicality degrees for diEerent methods with m = 2 and ' = 2

Data set FPCM PFPCM CFPCM

x p1 p2 �x;1 �x;2 tx;1 tx;2 �x;1 �x;2 tx;1 tx;2 �x;1 �x;2 tx;1 tx;2

1 −5:00 0.00 0.003 0.997 0.0000 0.0032 0.0065 0.9935 0.0004 0.0550 0.0054 0.9946 0.0002 0.0397
2 −3:34 1.67 0.002 0.998 0.0000 0.0166 0.0046 0.9954 0.0008 0.1813 0.0034 0.9966 0.0005 0.1487
3 −3:34 0.00 0.000 1.000 0.0000 0.9665 0.0015 0.9985 0.0009 0.5701 0.0008 0.9992 0.0006 0.6649
4 −3:34 −1:67 0.009 0.991 0.0000 0.0026 0.0160 0.9840 0.0007 0.0448 0.0136 0.9864 0.0004 0.0320
5 −1:67 0.00 0.009 0.991 0.0001 0.0104 0.0210 0.9790 0.0028 0.1298 0.0165 0.9835 0.0017 0.1025
6 0.00 0.00 0.500 0.500 0.0005 0.0005 0.5001 0.4999 0.0134 0.0134 0.5000 0.5000 0.0086 0.0087
7 1.67 0.00 0.991 0.009 0.0107 0.0001 0.9790 0.0210 0.1298 0.0028 0.9835 0.0165 0.1023 0.0017
8 3.34 1.67 0.998 0.002 0.0173 0.0000 0.9954 0.0046 0.1807 0.0008 0.9966 0.0034 0.1478 0.0005
9 3.34 0.00 1.000 0.000 0.9653 0.0000 0.9985 0.0015 0.5706 0.0009 0.9992 0.0008 0.6659 0.0006
10 3.34 −1:67 0.991 0.009 0.0026 0.0000 0.9841 0.0159 0.0449 0.0007 0.9864 0.0136 0.0321 0.0004
11 5.00 0.00 0.997 0.003 0.0033 0.0000 0.9935 0.0065 0.0549 0.0004 0.9946 0.0054 0.0397 0.0002
12 0.00 10.00 0.500 0.500 0.0000 0.0000 0.4999 0.5001 0.0002 0.0002 0.4998 0.5002 0.0001 0.0001

Class center (−3:0807; 0:3937) (−3:0530; 0:4484) (−3:0582; 0:4364)
(3:0786; 0:3969) (3:0528; 0:4469) (3:0585; 0:4343)

7. Experimental results

To compare the performance of FPCM, LBG, and the
proposed approaches, a data set proposed by Pal et al. [20]
and real images are used for simulation in an IBM Pentium
III 166 MHz computer. The data set, shown in Fig. 3, con-
sists of 12 points on a 2-D coordinate. Initially, the states
of neurons �x; i and tx; i are randomly set during 0 to 1. Ta-
bles 1 and 2 show the 4nal states of neurons �x; i and tx; i
with m= 2; '= 2 and m= 5; '= 2, respectively. Table 3
shows the indices of the 12 points sorted by typicality val-
ues in each cluster. Points 1–5 are most typical to cluster 1

and points 7–11 are also most typical to cluster 2. Point 6
has equal typicality values in both clusters. Although point
12 also occupies equal typicality values in both clusters, it
is an order of magnitude smaller than the typicality value
for point 6, which means that point 6 belongs to both clus-
ters with proper grades more strongly than point 12. This
also means that the PFPCM and CFPCM can prune outliers
from the data to reduce the eEects of noise. Pal et al. indi-
cated that the typicality parameter ' might be best chosen
in the interval 3–5 with initial centroids. This fact is proved
in FPCM, PFPCM, and CFPCM, respectively, with random
centroid values in this paper. With a small ' ('=2; m=2),



S.-H. Liu, J.-S. Lin / Pattern Recognition 35 (2002) 2201–2211 2207

Table 2
The membership grades and typicality degrees for diEerent methods with m = 5 and ' = 2

Data set FPCM PFPCM CFPCM

x p1 p2 �x;1 �x;2 tx;1 tx;2 �x;1 �x;2 tx;1 tx;2 �x;1 �x;2 tx;1 tx;2

1 −5:00 0.00 0.1644 0.8356 0.0000 0.0000 0.1942 0.8058 0.0003 0.0749 0.1852 0.8148 0.0002 0.0493
2 −3:34 1.67 0.1842 0.8158 0.0000 0.0000 0.2135 0.7865 0.0006 0.1057 0.2047 0.7953 0.0003 0.0701
3 −3:34 0.00 0.0174 0.9826 0.0000 0.9999 0.1488 0.8512 0.0006 0.6714 0.1261 0.8739 0.0003 0.7822
4 −3:34 −1:67 0.2050 0.7950 0.0000 0.0000 0.2379 0.7621 0.0006 0.0572 0.2283 0.7717 0.0003 0.0384
5 −1:67 0.00 0.2519 0.7481 0.0000 0.0000 0.2849 0.7151 0.0019 0.0783 0.2756 0.7244 0.0010 0.0531
6 0.00 0.00 0.5001 0.4999 0.0000 0.0000 0.4995 0.5005 0.0085 0.0085 0.5000 0.5000 0.0048 0.0048
7 1.67 0.00 0.7483 0.2517 0.0000 0.0000 0.7140 0.2860 0.0798 0.0019 0.7244 0.2756 0.0531 0.0010
8 3.34 1.67 0.8158 0.1842 0.0000 0.0000 0.7862 0.2138 0.1075 0.0006 0.7953 0.2047 0.0701 0.0003
9 3.34 0.00 0.9826 0.0174 0.9999 0.0000 0.8502 0.1498 0.6670 0.0006 0.8739 0.1261 0.7822 0.0003
10 3.34 −1:67 0.7950 0.2050 0.0000 0.0000 0.7613 0.2387 0.0577 0.0005 0.7717 0.2283 0.0384 0.0002
11 5.00 0.00 0.8355 0.1645 0.0000 0.0000 0.8055 0.1945 0.0753 0.0005 0.8148 0.1852 0.0493 0.0002
12 0.00 10.00 0.5000 0.5000 0.0000 0.0000 0.5000 0.5000 0.0001 0.0001 0.5000 0.5000 0.0001 0.0001

Class center (−3:3591; 0:1172) (−3:3493; 0:1916) (−3:3554; 0:1674)
(3:3584; 0:1174) (3:3534; 0:1950) (3:3557; 0:1676)

Table 3
The indices of the 12 points corresponding to a sort on tx;1 and tx;2 for diEerent methods with ' = 2 and distinct values of m

Normal sort FPCM PFPCM CFPCM

tx;1 tx;2 m = 5 m = 2 m = 5 m = 2 m = 5 m = 2

tx;1 tx;2 tx;1 tx;2 tx;1 tx;2 tx;1 tx;2 tx;1 tx;2 tx;1 tx;2

9 3 9 3 9 3 9 3 9 3 9 3 9 3
8 2 1; 2; 3, 1; 2; 4 8 2 8 2 8 2 8 2 8 2
7 5 4; 5; 6, 5; 6; 7, 7 5 7 5 7 5 7 5 7 5
11 1 8; 10, 8; 9, 11 1 11 1 11 1 11 1 11 1
10 4 11; 12 10; 11, 10 4 10 4 10 4 10 4 10 4
6 6 12 6 6 6 6 6 6 6 6 6 6
5 7 5 7 5 7 5 7 5 7 5 7
3 9 1; 2, 8; 9 2; 3; 4 8; 9 3 9 2; 3; 4 8; 9 3 9
2 8 3; 4, 10; 11 1 10; 11 2 8 1 10; 11 2 8
4 10 12 12 12 12 4 10 12 12 4 10
1 11 1 11 1 11
12 12 12 12 12 12

the proposed approaches PFPCM and CFPCM can always
obtain the correct sort for the indices of the 12 points ex-
cept for a big value of m (' = 2; m = 5). But the sorting
results, shown in Table 3, are constantly confused with a
small value of typicality parameter for any m in the FPCM.
In the application of VQ in DCT domain, the quality of

the images reconstructed from the designed methods DCT+
PFPCM (VQ) and DCT + CFPCM (VQ) was compared
with DCT+FPCM (VQ), DCT+LBG (VQ), and conven-
tional VQ method LBG, respectively. The training vectors
were extracted from 256× 256 real images with 8-bit gray
levels, which were divided into 4 × 4 blocks to generate
4096 non-overlapping 16-dimensional vectors and transmit-

ted to DCT block. Three codebooks of size 64, 128 and 256
were generated for simulation. The root mean-squared error
(RMSE) and peak signal-to-noise ratio (PSNR), evaluated
in the reconstructed image and original image, respectively,
are de4ned as follows:

RMSE =

√√√√ 1
N 2

N∑
x=1

N∑
y=1

[f(x; y)− f̂(x; y)]2 (25)

and

PSNR= 10 log10
255× 255
RMSE2

; (26)



2208 S.-H. Liu, J.-S. Lin / Pattern Recognition 35 (2002) 2201–2211

Fig. 4. LENA image and its reconstructed images with 64 codewords: (a) original image; (b) LBG; (c) DCT + LBG (VQ); and
(d) DCT + CFPCM (VQ).

where f(x; y); f̂(x; y), and 255 are original image, recon-
structed image, and peak value of pixels in an image. Param-
eters of all experiments for the real image in this paper are
set as v=$=0:5 and m='=3, respectively. Fig. 4 shows the
“LENNA” image and its reconstructed images using LBG,
DCT + LBG (VQ), and DCT + CFPCM (VQ) algorithms
with 64 codewords, respectively. Fig. 5 shows the “F-16”
image and its reconstructed images using DCT+LBG (VQ),
DCT+FPCM (VQ), and DCT+CFPCM (VQ) approaches
with 256 codewords, respectively. The average PSNRs for
all reconstructed images completed by the listed methods
using DCT + VQ are higher by 2.3–3 dB than those done
by conventional VQ method LBG.
Tables 4 and 5 show the PSNR and RMSE of the im-

ages “LENNA” and “F-16” reconstructed from the various
methods with diEerent codebook sizes. In accordance with
Tables 4 and 5, better results can be obtained with the pro-
posed DCT+PFPCM (VQ) and DCT+CFPCM (VQ) algo-
rithms. In Table 6, the reconstruction performance of PSNRs
for the CFPCM and PFPCM is better than the FPCM and

LBG by about 0.3–0:5 dBs and 2–3 dB in frequency domain,
respectively. In summary, from the experiment results, the
proposed algorithms could satisfactorily produce the code-
book design in the DCT domain, while convergence of the
objective function is guaranteed.

8. Discussion and conclusions

FPCM embedded with penalized and compensated con-
straints named CFPCM and PFPCM for VQ in DCT domain
have been presented to enhance the reconstruction perfor-
mance and reduce the block eEect in this paper. In the sim-
ulation of modi4ed butterPy pattern, CFPCM, PFPCM, and
FPCM can always prune outliers. But PFCM is more sen-
sitive than the proposed CFPCM and PFPCM with a small
typicality value ' so that PFCM always confuses the typical-
ity order of indices in the simulated pattern with a random
initialization. From the experimental results, the proposed
PFPCM and CFPCM algorithms in frequency domain pro-
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Fig. 5. F-16 image and its reconstructed images with 256 codewords: (a) original image; (b) DCT + LBG (VQ); (c) DCT + FPCM (VQ);
and (d) DCT + CFPCM (VQ).

duces reconstructed images which are more promising than
those reconstructed by the LBG (VQ), DCT + LBG (VQ),
and DCT + FPCM (VQ) algorithms. The proposed strate-
gies diEer from the conventional FPCM, PFCM, and CFCM
in which the possibilistic reasoning strategy is imposed on
fuzzy clustering with penalized and compensated constraints
for updating the grades of membership and typicality.

9. Summary

In this paper, two approaches called fuzzy possibilistic
c-means (PFPCM) and compensated fuzzy possibilistic
c-means (CFPCM) to vector quantization (VQ) in discrete
cosine transform (DCT) for image compression are pro-
posed. These two techniques embedded the penalized and
compensated constraints into fuzzy possibilistic c-means
(FPCM) to update the performance in reasoning process.
The main purpose is to modify the FPCM strategy with
penalized or compensated constraints so that the cluster

centroids can be updated with penalized or compensated
terms iteratively in order to 4nd near-global solution in
optimal problem. The information transformed by DCT
was separated into DC and AC coe5cients. Then, the
AC coe5cients are trained by using the proposed methods
to generate a better codebook based on VQ. These two
techniques have proven that the outlier noises can be more
e5ciently removed than the FPCM in the experimental re-
sults. From compression simulations, the promising perfor-
mances can also be obtained using the proposed approaches
than the FPCM and conventional VQ methods.
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Table 4
Reconstruction performance on LENA image under diEerent algo-
rithms

Algorithms Codebook size PSNR RMSE

LBG (VQ) 64 25.26 12.12
128 26.37 11.27
256 27.06 10.33

DCT + LBG (VQ) 64 28.56 9.43
128 29.05 8.85
256 29.75 8.17

DCT + FPCM (VQ) 64 29.18 8.70
128 30.05 7.98
256 30.75 7.20

DCT + PFPCM (VQ) 64 29.25 8.63
128 30.18 7.93
256 30.88 7.14

DCT + CFPCM (VQ) 64 29.31 8.51
128 30.28 7.83
256 31.02 7.03

Table 6
PSNRs of images reconstructed from a codebook with size = 256 by using CFPCM, PFPCM, FPCM and LBG in DCT domain and LBG
in spatial domain

Method DCT+CFPCM (VQ) DCT+PFPCM (VQ) DCT+FPCM (VQ) DCT+LBD (VQ) LBG (VQ)
Image

Barbara 31.88 31.73 31.50 29.54 26.93
Boy–girl 35.96 35.80 35.65 33.26 31.20
Girl 35.29 34.97 34.82 32.90 29.69
Pepper 32.72 32.59 32.31 29.66 26.78

References

[1] N. Ahamed, E. Oja, K.R. Rao, Discrete cosine transform,
IEEE Trans. Comput. C-23 (1974) 90–93.

[2] K.R. Rao, P. Yip, Discrete Cosine Transform—Algorithms,
Advantages, Applications, Academic Press, California, 1990.

[3] G.K. Wallace, The JPEG still picture compression standard,
IEEE Trans. Consumer Electron. 38 (1) (1992) 18–34.

[4] R.M. Gray, Vector quantization, IEEE Acoust. Speech, Signal
Process. Mag. 1 (1984) 4–29.

[5] Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector
quantizer design, IEEE Trans. Commun. COM-28 (1) (1988)
84–95.

[6] J.-S. Lin, S.-H. Liu, C.-Y. Lin, The application of fuzzy
hop4eld neural network to design better codebook for image
vector quantization, IEICE Trans. Fundamentals E81-A (8)
(1998) 1645–1651.

[7] J.-S. Lin, S.-H. Liu, A competitive continuous hop4eld neural
network for vector quantization in image compression, Eng.
Appl. Artif. Intell. 12 (1999) 111–118.

Table 5
Reconstruction performance on F-16 image under diEerent algo-
rithms

Algorithms Codebook size PSNR RMSE

LBG (VQ) 64 24.11 14.91
128 25.29 12.78
256 26.34 11.53

DCT + LBG (VQ) 64 27.30 11.00
128 27.84 10.35
256 28.66 9.41

DCT + FPCM (VQ) 64 27.61 10.61
128 28.54 9.54
256 29.44 8.62

DCT + PFPCM (VQ) 64 27.69 10.53
128 28.66 9.40
256 29.43 8.60

DCT + CFPCM (VQ) 64 27.75 10.45
128 28.79 9.32
256 29.51 8.53

[8] J.-S. Lin, Image vector quantization using an annealed hop4eld
neural network, Opt. Eng. 38 (4) (1999) 599–605.

[9] J.-S. Lin, Chi-Yuan Lin, In search of optimal codebook
using genetic algorithm for image compression, CVGIP’99
Symposium, Vol. 1, Taipei, 1999, pp. 222–226.

[10] J.-S. Lin, Chi-Yuan Lin, A penalized fuzzy hop4eld
neural network and its application in image compression,
Proceedings of the Eighth International Fuzzy Systems
Association World Congress, Vol. 2, Taipei, 1999,
pp. 843–848.

[11] M.S. Yang, On a class of fuzzy classi4cation maximum
likelihood procedures, Fuzzy Sets and Systems 57 (1993)
365–375.

[12] M.S. Yang, C.F. Su, On parameter estimation for normal
mixtures based on fuzzy clustering algorithms, Fuzzy Sets and
Systems 68 (1994) 13–28.

[13] J.-S. Lin, Fuzzy clustering using a compensated fuzzy hop4eld
network, Neural Process. Lett. 10 (1999) 35–48.

[14] L.A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965)
338–353.



S.-H. Liu, J.-S. Lin / Pattern Recognition 35 (2002) 2201–2211 2211

[15] J.C. Dunn, A fuzzy relative of the ISODATA process and its
use in detecting compact well-separated clusters, J. Cybernet.
3 (1974) 32–57.

[16] J.C. Bezdek, Fuzzy mathematics in pattern classi4cation,
Ph.D. Dissertation, Applied Mathematics, Cornell University,
Ithaca, New York, 1973.

[17] R. Krishnapuram, J.M. Keller, A possibilistic approach
to clustering, IEEE Trans. Fuzzy Systems 1 (1993)
98–110.

[18] R. Krishnapuram, J.M. Keller, The possibilistic c-means
algorithm: insights and recommendations, IEEE Trans. Fuzzy
Systems 4 (1996) 385–393.

[19] M. Barni, V. Cappellini, A. Mecocci, Comments on a
possibilistic approach to clustering, IEEE Trans. Fuzzy System
4 (3) (1996) 393–396.

[20] N.R. Pal, K. Pal, J.C. Bezdek, A mixed c-means clustering
model, IEEE International Conference on Fuzzy Systems,
Vol. 1, Barcelona, Spain, 1997, pp. 11–21.

About the Author—SHAO-HAN LIU is a Lecturer of the Department of Electronic Engineering at National Chin-Yi Institute of Technology,
Taichung, Taiwan, ROC. He received the B.S. degree in Electronic Engineering from Taiwan University of Science and Technology in
1983, and the M.S. degree in Management Science from Northrop University, USA, in 1989. His research interests include Neural Network
and Image Compression.

About the Author—JZAU-SHENG LIN is an Associate Professor of the Department of Electronic Engineering at National Chin-Yi Institute
of Technology, Taichung, Taiwan, ROC. He received the B.S. degree in Electronic Engineering from Taiwan University of Science and
Technology in 1980, the M.S. and Ph.D degrees in Electrical Engineering from National Cheng Kung University in 1989 and 1996,
respectively. His research interests include Neural Network, Image Compression, Pattern Recognition and Medical Image Analysis.


	Vector quantization in DCT domain usingfuzzy possibilistic c-means based on penalizedand compensated constraints
	Introduction
	VQ and DCT
	Fuzzy clustering techniques
	Fuzzy c-means algorithms
	Penalized fuzzy c-means and compensated fuzzy c-means

	Possibilistic clustering technique
	Fuzzy-possibilistic c-means
	Penalized fuzzy possibilistic c-means and compensated fuzzy possibilistic c-means
	Experimental results
	Discussion and conclusions
	Summary
	Acknowledgements
	References


